论文标题
通过一阶反应网络耦合的异质介质中多物种扩散的有限过渡时间
Finite transition times for multispecies diffusion in heterogeneous media coupled via first-order reaction networks
论文作者
论文摘要
在许多应用中,计算在异质培养基中有效达到稳态的多种耦合多物种反应性传输过程需要多长时间。在本文中,我们展示了如何准确计算此类过程过渡到稳态较小的公差所需的时间,而无需求解管理时间依赖的模型方程。我们的方法对于一般的一阶反应网络和任意数量的物种有效。提出了三个数值示例,以确认分析并研究该方法的功效。一个关键的发现是,对于顺序反应,我们的方法可以更好地更好地分开两个最小的反应速率。 MATLAB代码实施该方法并重现本文中的结果。
Calculating how long a coupled multi-species reactive-diffusive transport process in a heterogeneous medium takes to effectively reach steady state is important in many applications. In this paper, we show how the time required for such processes to transition to within a small specified tolerance of steady state can be calculated accurately without having to solve the governing time-dependent model equations. Our approach is valid for general first-order reaction networks and an arbitrary number of species. Three numerical examples are presented to confirm the analysis and investigate the efficacy of the approach. A key finding is that for sequential reactions our approach works better provided the two smallest reaction rates are well separated. MATLAB code implementing the methodology and reproducing the results in the paper is made available.