论文标题

学习用于机器人计划和控制的混合成员凸优化策略

Learning Mixed-Integer Convex Optimization Strategies for Robot Planning and Control

论文作者

Cauligi, A., Culbertson, P., Stellato, B., Bertsimas, D., Schwager, M., Pavone, M.

论文摘要

与25年前相比,混合成员凸编程(MICP)看到了显着的算法和硬件改进,并求解了几个数量级的时间速度。尽管有这些进展,但MICP很少应用于现实世界的机器人控制中,因为解决方案时间对于在线应用程序仍然太慢。在这项工作中,我们介绍了可可(Combinatorial Offline,Convex Online)框架,以在非常高速的机器人技术中求解MIC。可可将最佳解决方案的组合部分编码为策略。使用从离线问题解决方案收集的数据,我们训练多类分类器,以预测特定于问题的参数(例如状态或障碍)的最佳策略。与以前的方法相比,我们使用特定于任务的策略和修剪冗余策略来显着减少预测指标必须选择的类的数量,从而大大提高可扩展性。鉴于预测的策略,控制任务成为我们可以以毫秒为单位解决的小型凸优化问题。在带有墙壁,自由飞行的空间机器人和以任务为导向的grasps的卡车孔系统上进行的数值实验表明,与最新的求解器相比,我们的方法不仅提供1到2个数量级的速度,而且还提供了接近全球最佳MICP解决方案的性能。

Mixed-integer convex programming (MICP) has seen significant algorithmic and hardware improvements with several orders of magnitude solve time speedups compared to 25 years ago. Despite these advances, MICP has been rarely applied to real-world robotic control because the solution times are still too slow for online applications. In this work, we present the CoCo (Combinatorial Offline, Convex Online) framework to solve MICPs arising in robotics at very high speed. CoCo encodes the combinatorial part of the optimal solution into a strategy. Using data collected from offline problem solutions, we train a multiclass classifier to predict the optimal strategy given problem-specific parameters such as states or obstacles. Compared to previous approaches, we use task-specific strategies and prune redundant ones to significantly reduce the number of classes the predictor has to select from, thereby greatly improving scalability. Given the predicted strategy, the control task becomes a small convex optimization problem that we can solve in milliseconds. Numerical experiments on a cart-pole system with walls, a free-flying space robot, and task-oriented grasps show that our method provides not only 1 to 2 orders of magnitude speedups compared to state-of-the-art solvers but also performance close to the globally optimal MICP solution.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源