论文标题
可调腔增强的Terahertz频域光学厅效应
Tunable cavity-enhanced terahertz frequency-domain optical Hall effect
论文作者
论文摘要
此处介绍的是可调型腔体增强的Terahertz频域光学厅效应技术的开发和演示。该空腔由至少一个固定和一个可调的Fabry-Pérot谐振器组成。该方法适合于具有平面平行界面的半透明导电层结构中光学霍尔效应产生的光学特征。物理原理是电场成分的建设性干扰,该电场成分在多个光通道通过导电层堆栈上诱导了极化旋转。调整一个空腔参数,例如外部空腔厚度,允许在构造性干扰的频率上移动,并可以在大型光谱区域获得光霍尔效应产生的光学特征的增强。腔调节光学阶段和气流电池用作利用外部腔的仪器的示例,以增强反射的Terahertz束的极化变化。永久磁铁用于提供必要的外部磁场。方便地,可以使用永久磁铁的高反射表面来创建可调外部腔。信号增强功能允许提取薄膜的自由电荷载体性能,并可以消除对昂贵的超导磁体的需求。此外,外部空腔的厚度建立了额外的独立测量条件,类似于磁场强度,terahertz频率和入射角。研究了高电子迁移率晶体管结构和外延石墨烯作为示例。我们讨论理论背景,仪器设计,数据获取和数据分析程序。
Presented here is the development and demonstration of a tunable cavity-enhanced terahertz frequency-domain optical Hall effect technique. The cavity consists of at least one fixed and one tunable Fabry-Pérot resonator. The approach is suitable for enhancement of the optical signatures produced by the optical Hall effect in semi-transparent conductive layer structures with plane parallel interfaces. The physical principle is the constructive interference of electric field components that undergo multiple optical Hall effect induced polarization rotations upon multiple light passages through the conductive layer stack. Tuning one of the cavity parameters, such as the external cavity thickness, permits shifting of the frequencies of the constructive interference, and enhancement of the optical signatures produced by the optical Hall effect can be obtained over large spectral regions. A cavity-tuning optical stage and gas flow cell are used as examples of instruments that exploit tuning an external cavity to enhance polarization changes in a reflected terahertz beam. Permanent magnets are used to provide the necessary external magnetic field. Conveniently, the highly reflective surface of a permanent magnet can be used to create the tunable external cavity. The signal enhancement allows the extraction of the free charge carrier properties of thin films, and can eliminate the need for expensive super-conducting magnets. Furthermore, the thickness of the external cavity establishes an additional independent measurement condition, similar to, for example, the magnetic field strength, terahertz frequency, and angle of incidence. A high electron mobility transistor structure and epitaxial graphene are studied as examples. We discuss the theoretical background, instrument design, data acquisition, and data analysis procedures.