论文标题

I.I.D.的非参数估计分数SDE的路径

Nonparametric Estimation for I.I.D. Paths of Fractional SDE

论文作者

Comte, Fabienne, Marie, Nicolas

论文摘要

本文介绍了从独立连续观测计算出的漂移函数的非参数估计量,按紧凑的时间间隔计算出的,该解决方案的解决方案是由分数布朗尼运动(FSDE)驱动的随机微分方程。首先,在Skorokhod的基于不可分割的最小二乘甲骨文$ \ widehat b $ $ b $上建立了风险约束。由于FSDE解决方案与其初始条件的衍生物之间的关系,因此在可计算的$ \ widehat b $的可计算近似值中推断出风险界限。另一个限制是直接建立在$ b'$的估计器中进行比较的。在紧凑的三角学基础上或$ \ mathbb r $ $ supported hermite的基础上,这些估计量的一致性和收敛速度是为这些估计值建立的。

This paper deals with nonparametric estimators of the drift function $b$ computed from independent continuous observations, on a compact time interval, of the solution of a stochastic differential equation driven by the fractional Brownian motion (fSDE). First, a risk bound is established on a Skorokhod's integral based least squares oracle $\widehat b$ of $b$. Thanks to the relationship between the solution of the fSDE and its derivative with respect to the initial condition, a risk bound is deduced on a calculable approximation of $\widehat b$. Another bound is directly established on an estimator of $b'$ for comparison. The consistency and rates of convergence are established for these estimators in the case of the compactly supported trigonometric basis or the $\mathbb R$-supported Hermite basis.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源