论文标题

星际分子云中甲烷表面形成的实验研究

An experimental study of the surface formation of methane in interstellar molecular clouds

论文作者

Qasim, D., Fedoseev, G., Chuang, K. -J., He, J., Ioppolo, S., van Dishoeck, E. F., Linnartz, H.

论文摘要

甲烷是最简单的稳定分子之一,既丰富又广泛分布在太空中。据认为,它来自星际分子云的部分起源,它们接近恒星形成周期的开始。对低质量和高质量的年轻恒星物体对CH $ _4 $冰的观察性调查表明,预计C $ _4 $的大部分$都会由C上的C氢化而形成,而CH $ _4 $冰与实心H $ _2 $ o密切相关。但是,由于尚未实验实现了星际冰类似物的碳 - 原子化学,因此尚未在受控实验室条件下进行研究。在这项研究中,我们成功地证明了在超高真空设备中实现的C元光束,在两个单独的共同沉积实验中形成了$ _4 $冰的形成:在10 k表面上的C + h,在10 k的表面上,模拟ch $ _4 $地形在h $ _2 $ o _2 $ o _ $ _2 $ o c + h $ h $ y $ _2 $ _2 $ _2 $ _2 $ _2 $ _2 k $ _2 k $ o _2同时与h $ _2 $ o冰。我们确认可以通过原子C和H的反应来形成$ _4 $,并且当Ch $ _4 $在h $ _2 $ o-rich ICE中形成时,Ch $ _4 $编队率是2倍。这与观察性的发现一致,即星际ch $ _4 $和h $ _2 $ o在极性冰阶段一起形成,即当c-和h原子同时与粉尘粒上的o原子同时吸收。首次报道了导致星际CH $ _4 $(和CD $ _4 $)冰层的条件,并可以将其纳入天体化学模型中,以进一步限制星际介质和其他地区的CH $ _4 $的化学。

Methane is one of the simplest stable molecules that is both abundant and widely distributed across space. It is thought to have partial origin from interstellar molecular clouds, which are near the beginning of the star formation cycle. Observational surveys of CH$_4$ ice towards low- and high-mass young stellar objects showed that much of the CH$_4$ is expected to be formed by the hydrogenation of C on dust grains, and that CH$_4$ ice is strongly correlated with solid H$_2$O. Yet, this has not been investigated under controlled laboratory conditions, as carbon-atom chemistry of interstellar ice analogues has not been experimentally realized. In this study, we successfully demonstrate with a C-atom beam implemented in an ultrahigh vacuum apparatus the formation of CH$_4$ ice in two separate co-deposition experiments: C + H on a 10 K surface to mimic CH$_4$ formation right before H$_2$O ice is formed on the dust grain, and C + H + H$_2$O on a 10 K surface to mimic CH$_4$ formed simultaneously with H$_2$O ice. We confirm that CH$_4$ can be formed by the reaction of atomic C and H, and that the CH$_4$ formation rate is 2 times greater when CH$_4$ is formed within a H$_2$O-rich ice. This is in agreement with the observational finding that interstellar CH$_4$ and H$_2$O form together in the polar ice phase, i.e., when C- and H-atoms simultaneously accrete with O-atoms on dust grains. For the first time, the conditions that lead to interstellar CH$_4$ (and CD$_4$) ice formation are reported, and can be incorporated into astrochemical models to further constrain CH$_4$ chemistry in the interstellar medium and in other regions where CH$_4$ is inherited.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源