论文标题

从用户项目评级数据设计和连接检查隐式社交网络

Designing and Connectivity Checking of Implicit Social Networks from the User-Item Rating Data

论文作者

Banerjee, Suman

论文摘要

\ emph {隐式社交网络}是一组人之间的联系社会结构,如果他们有共同的兴趣,则两个人将其联系在一起。此类网络的一个真正的\ mbox { - }生活示例是在线商业房屋客户之间的隐式社交网络,如果两个客户喜欢类似的项目,则在两个客户之间存在优势。此类网络通常对不同的商业应用程序有用,例如\ textit {target advertisement},\ textit {病毒营销}等。在本文中,我们在此方向上研究了两个基本问题。第一个是,鉴于用户\ mbox { - } e \ mbox { - }商务之家的项目评级数据,我们如何在其用户中设计隐式社交网络,第二个是在设计本身时,我们可以在用户中获得连接性信息。正式地,我们将第一个问题称为\ textsc {隐式用户网络设计}问题,第二个问题为\ textsc {隐式用户网络设计带有连接性检查}问题。对于第一个问题,我们提出了三种不同的算法,即\ emph {`详尽搜索方法'},\ emph {`clique添加方法'}和\ textIt {`matrix乘数\ mbox { - }基于方法'}。对于第二个问题,我们提出了两种不同的方法。第一个是顺序方法:设计然后检查连接性检查,另一个是一种并发方法,它基本上是一种同时执行设计和连接性检查的增量算法。提出的方法已经尝试了三个公开评级网络数据集,例如\ emph {flixter},\ textit {movielens}和\ textit {epinions}。

\emph{Implicit Social Network} is a connected social structure among a group of persons, where two of them are linked if they have some common interest. One real\mbox{-}life example of such networks is the implicit social network among the customers of an online commercial house, where there exists an edge between two customers if they like similar items. Such networks are often useful for different commercial applications such as \textit{target advertisement}, \textit{viral marketing}, etc. In this article, we study two fundamental problems in this direction. The first one is that, given the user\mbox{-}item rating data of an E\mbox{-}Commerce house, how we can design implicit social networks among its users and the second one is at the time of designing itself can we obtain the connectivity information among the users. Formally, we call the first problem as the \textsc{Implicit User Network Design} Problem and the second one as \textsc{Implicit User Network Design with Connectivity Checking} Problem. For the first problem, we propose three different algorithms, namely \emph{`Exhaustive Search Approach'}, \emph{`Clique Addition Approach'}, and \textit{`Matrix Multiplication\mbox{-}Based Approach'}. For the second problem, we propose two different approaches. The first one is the sequential approach: designing and then connectivity checking, and the other one is a concurrent approach, which is basically an incremental algorithm that performs designing and connectivity checking simultaneously. Proposed methodologies have experimented with three publicly available rating network datasets such as \emph{Flixter}, \textit{Movielens}, and \textit{Epinions}.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源