论文标题

Dilworth的Borel Posets定理

Dilworth's Theorem for Borel Posets

论文作者

Bosek, Bartłomiej, Grytczuk, Jarosław, Lonc, Zbigniew

论文摘要

著名的迪尔沃思(Dilworth)定理断言,任何有限的宽度$ k $的有限孔都可以分解为$ k $链。我们研究以下问题:鉴于有限宽度$ k $的Borel Poset $ p $,是否可以将其分解为$ k $ borel链?我们在可嵌入真实行的Borel Posets的特殊情况下给出了积极的答案。我们还证明了对POSET的双重定理,其可比性图在局部可数。

A famous theorem of Dilworth asserts that any finite poset of width $k$ can be decomposed into $k$ chains. We study the following problem: given a Borel poset $P$ of finite width $k$, is it true that it can be decomposed into $k$ Borel chains? We give a positive answer in a special case of Borel posets embeddable into the real line. We also prove a dual theorem for posets whose comparability graphs are locally countable.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源