论文标题
完美的电导光栅的优化方法可实现高衍射效率
Optimization methods for achieving high diffraction efficiency with perfect electric conducting gratings
论文作者
论文摘要
这项工作介绍了应用于一维周期光栅的一阶优化方法的实施,数值示例和实验收敛研究。通过边界积分方程和形状导数,优化了光栅的曲线,以使给定衍射模式的衍射效率最大化,用于横向电动极化。我们提供了三种不同优化方法的详尽比较:一种一阶方法(梯度下降);一种基于牛顿迭代的二阶方法,在其中,牛顿的通常牛顿步骤取代了由黑森矩阵的频谱分解给出的特征值的绝对值来处理非跨性别性;以及Broyden-Fletcher-Goldfarb-Shanno(BFGS)算法,一种准Newton方法。提供数值示例以验证我们的主张。此外,设计了两个光栅曲线,以高效率在Littrow配置中,然后与高效率的商业光栅进行比较。从数值实验中得出的结论和建议以及未来的研究途径。
This work presents the implementation, numerical examples and experimental convergence study of first- and second-order optimization methods applied to one-dimensional periodic gratings. Through boundary integral equations and shape derivatives, the profile of a grating is optimized such that it maximizes the diffraction efficiency for given diffraction modes for transverse electric polarization. We provide a thorough comparison of three different optimization methods: a first-order method (gradient descent); a second-order approach based on a Newton iteration, where the usual Newton step is replaced by taking the absolute value of the eigenvalues given by the spectral decomposition of the Hessian matrix to deal with non-convexity; and the Broyden-Fletcher-Goldfarb-Shanno (BFGS) algorithm, a quasi-Newton method. Numerical examples are provided to validate our claims. Moreover, two grating profiles are designed for high efficiency in the Littrow configuration and then compared to a high efficiency commercial grating. Conclusions and recommendations, derived from the numerical experiments, are provided as well as future research avenues.