论文标题
筛查胰腺神经内分泌肿瘤分类的细分
Segmentation for Classification of Screening Pancreatic Neuroendocrine Tumors
论文作者
论文摘要
这项工作提出了全面的结果,可以在早期检测胰腺神经内分泌肿瘤(PNETS),这是胰腺中产生的一组内分泌肿瘤,这是第二种常见的胰腺癌类型,通过检查腹部CT扫描。据我们所知,此任务尚未作为计算任务进行研究。为了向放射科医生提供肿瘤位置,我们采用分割框架来通过检查至少有足够数量的体素被分割为肿瘤来对CT体积进行分类。为了定量分析我们的方法,我们收集和voxelwisely标记了一个新的腹部CT数据集,其中包含$ 376 $的情况,每种情况都可以使用动脉和静脉相位,其中$ 228 $ case $ 228 $ case case case the剩余的$ 148 $ 148 $ case是正常的,目前是PNET的最大数据,这是PNET的最大数据,我们的知识是我们的最佳知识。为了将放射科医生丰富的知识纳入我们的框架,我们也注释了扩张的胰管,这被认为是胰腺癌高风险的迹象。从数量上讲,我们的方法的表现优于最先进的分割网络,并以$ 81.08 \%$的特异性达到$ 89.47 \%$的敏感性,这表明通过早期肿瘤检测到与癌症诊断相关的临床影响的潜在方向。
This work presents comprehensive results to detect in the early stage the pancreatic neuroendocrine tumors (PNETs), a group of endocrine tumors arising in the pancreas, which are the second common type of pancreatic cancer, by checking the abdominal CT scans. To the best of our knowledge, this task has not been studied before as a computational task. To provide radiologists with tumor locations, we adopt a segmentation framework to classify CT volumes by checking if at least a sufficient number of voxels is segmented as tumors. To quantitatively analyze our method, we collect and voxelwisely label a new abdominal CT dataset containing $376$ cases with both arterial and venous phases available for each case, in which $228$ cases were diagnosed with PNETs while the remaining $148$ cases are normal, which is currently the largest dataset for PNETs to the best of our knowledge. In order to incorporate rich knowledge of radiologists to our framework, we annotate dilated pancreatic duct as well, which is regarded as the sign of high risk for pancreatic cancer. Quantitatively, our approach outperforms state-of-the-art segmentation networks and achieves a sensitivity of $89.47\%$ at a specificity of $81.08\%$, which indicates a potential direction to achieve a clinical impact related to cancer diagnosis by earlier tumor detection.