论文标题

知识指导的度量学习,用于几次射击文本分类

Knowledge Guided Metric Learning for Few-Shot Text Classification

论文作者

Sui, Dianbo, Chen, Yubo, Mao, Binjie, Qiu, Delai, Liu, Kang, Zhao, Jun

论文摘要

基于深度学习的文本分类模型的培训在很大程度上取决于大量的注释数据,这很难获得。当标记的数据稀缺时,模型倾向于难以实现令人满意的性能。但是,人类可以通过很少的例子非常有效地区分新类别。这主要是由于人类可以利用从相关任务获得的知识。受到人类智慧的启发,我们建议将外部知识引入几乎没有学识的学习中,以模仿人类的知识。研究了一个新的参数生成器网络,该网络能够使用外部知识来生成关系网络参数。配备这些生成的参数时,可以在任务之间传输指标,以便类似的任务使用类似的指标,而不同的任务使用不同的指标。通过实验,我们证明我们的方法的表现优于最先进的文本分类模型。

The training of deep-learning-based text classification models relies heavily on a huge amount of annotation data, which is difficult to obtain. When the labeled data is scarce, models tend to struggle to achieve satisfactory performance. However, human beings can distinguish new categories very efficiently with few examples. This is mainly due to the fact that human beings can leverage knowledge obtained from relevant tasks. Inspired by human intelligence, we propose to introduce external knowledge into few-shot learning to imitate human knowledge. A novel parameter generator network is investigated to this end, which is able to use the external knowledge to generate relation network parameters. Metrics can be transferred among tasks when equipped with these generated parameters, so that similar tasks use similar metrics while different tasks use different metrics. Through experiments, we demonstrate that our method outperforms the state-of-the-art few-shot text classification models.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源