论文标题

反向半群的统一ROE代数

The uniform Roe algebra of an inverse semigroup

论文作者

Lledó, Fernando, Martínez, Diego

论文摘要

考虑到一个离散且可计数的反向半群$ s $,一个人可以与组案例相比,其几何方面可以研究。特别是,我们可以在其Schützenberger图的不相交联合中给出的Path Metric给出天然度量。我们用$λ_s$表示该图,继承了$ s $的许多结构。在本文中,我们比较了c*-algebra $ \ mathcal {r} _s $,由左侧定期代表$ \ ell^2(s)$和$ \ ell^2(s)$和$ \ ell^\ eld^\ infty(s)$生成,与统一的Roe algebra与均值$ c^*u(λ__s)。这产生了$ \ MATHCAL {R} _S = C^*_ U(λ_S)$的苦难,该$概括了$ s $的有限生成。我们已经用有限的实验性(FL)称其为此,因为它可以以$λ_s$的方式标记为限制。 图$λ_s$和上面的FL条件还允许分析$λ_s$的大规模属性,并将它们与统一ROE代数的C* - 销售相关联。特别是,我们表明$ s $的域可测量性(概述了半群的概括性的定义,cf.,[5])是$λ_s$的准时不变性。此外,我们根据相应的c* - 代理的核性和精确性来表征$λ_s$(或其组件)的属性a。我们还从这个大规模的角度来处理F-Inverse和E-Norial逆向半群的特殊类别。

Given a discrete and countable inverse semigroup $S$ one can study, in analogy to the group case, its geometric aspects. In particular, we can equip $S$ with a natural metric, given by the path metric in the disjoint union of its Schützenberger graphs. This graph, which we denote by $Λ_S$, inherits much of the structure of $S$. In this article we compare the C*-algebra $\mathcal{R}_S$, generated by the left regular representation of $S$ on $\ell^2(S)$ and $\ell^\infty(S)$, with the uniform Roe algebra over the metric space, namely $C^*_u(Λ_S)$. This yields a chacterization of when $\mathcal{R}_S = C^*_u(Λ_S)$, which generalizes finite generation of $S$. We have termed this by finite labeability (FL), since it holds when the $Λ_S$ can be labeled in a finitary manner. The graph $Λ_S$, and the FL condition above, also allow to analyze large scale properties of $Λ_S$ and relate them with C*-properties of the uniform Roe algebra. In particular, we show that domain measurability of $S$ (a notion generalizing Day's definition of amenability of a semigroup, cf., [5]) is a quasi-isometric invariant of $Λ_S$. Moreover, we characterize property A of $Λ_S$ (or of its components) in terms of the nuclearity and exactness of the corresponding C*-algebras. We also treat the special classes of F-inverse and E-unitary inverse semigroups from this large scale point of view.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源