论文标题
连续q-peudoconcave图的叶子
Foliations of continuous q-pseudoconcave graphs
论文作者
论文摘要
我们表明,对于$ k = 0,1 $,连续映射$ f:d \ to \ mathbb {r}^k \ times \ times \ mathbb {c}^p $,在$ \ \ mathbb {c}^n \ times \ mathbb {r}^r}^r} $ nif in $ nif in in $ d $ in $ d $ in $ d $ in $ d $ in $ d $ d $ nimif in y is imify imifield和imifders imiford ys imiford imiford iS if ins imiford,如果它的补充是$ n $ -pseudoconvex(从罗斯斯坦的意义上)相对$(d \ times \ times \ mathbb {r}^k)\ times \ times \ times \ times \ mathbb {c}^p \ subset \ subset \ subsbb {c}^{c}^{n}^{n} \ times \ times \ mathbb {c}
We show that for $k = 0, 1$ the graph of a continuous mapping $f:D \to \mathbb{R}^k\times\mathbb{C}^p$, defined on a domain $D$ in $\mathbb{C}^n\times\mathbb{R}^k$, is locally foliated by complex $n$-dimensional submanifolds if and only if its complement is $n$-pseudoconvex (in the sense of Rothstein) relatively to $(D\times\mathbb{R}^k)\times\mathbb{C}^p\subset \mathbb{C}^{n}\times\mathbb{C}^k\times\mathbb{C}^p$.