论文标题

限制下的Minkowski功能

Minkowski functionals for phase behavior under confinement

论文作者

Boelens, Arnout M P, Tchelepi, Hamdi A

论文摘要

在这项工作中,Minkowski功能被用作研究形态(即结构的形状)和拓扑(即如何连接不同的结构)如何影响壁的吸附和紧密限制下的毛细管凝结。基于经典密度功能理论(DFT)的数值模拟使用硬球和Lennard-Jones流体进行多种几何形状。将这些DFT计算与使用Minkowski功能获得的结果进行了比较。发现Minkowski功能可以很好地描述Lennard-Jones流体的行为,直至小型系统尺寸。此外,通过自由能的分解,Minkowski功能提供了一个很好的框架,以更好地了解系统物理学的主要贡献是什么。最后,在研究阶段包膜移动作为Minkowski功能的函数时,发现拓扑具有不同的效果,具体取决于所考虑的相变是一阶还是二阶过渡。

In this work, the Minkowski functionals are used as a framework to study how morphology (i.e. the shape of a structure) and topology (i.e. how different structures are connected) influence wall adsorption and capillary condensation under tight confinement. Numerical simulations based on classical density functional theory (DFT) are run for a wide variety of geometries using both hard-sphere and Lennard-Jones fluids. These DFT computations are compared to results obtained using the Minkowski functionals. It is found that the Minkowski functionals can provide a good description of the behavior of Lennard-Jones fluids down to small system sizes. In addition, through decomposition of the free energy, the Minkowski functionals provide a good framework to better understand what are the dominant contributions to the physics of a system. Lastly, while studying the phase envelope shift as a function of the Minkowski functionals it is found that topology has a different effect depending on whether the phase transition under consideration is a first- or a second-order transition.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源