论文标题
无监督的现实世界图像超级分辨率通过域 - 距离意识培训
Unsupervised Real-world Image Super Resolution via Domain-distance Aware Training
论文作者
论文摘要
如今,由于实际情况在实际情况下的实用和有希望的潜力,无监督的超分辨率(SR)一直在飙升。现成方法的哲学在于不成熟数据的增强,即首先生成合成低分辨率(LR)图像$ \ MATHCAL {y}^g $对应于现实世界高分辨率(HR)$ \ MATHCAL {x}^r $ in the Real-World domain $ \ y \ y \ y \ y y y y y y y y y Mathcal $ \ y \ y y y y Mathcal $ \ y \ y r \伪配对$ \ {\ Mathcal {y}^g,\ Mathcal {x}^r \} $以监督的方式进行培训。不幸的是,由于图像翻译本身是一项极具挑战性的任务,因此这些方法的SR性能受到生成的合成LR图像和真实LR图像之间的域间隙的严重限制。在本文中,我们为无监督的现实世界图像SR提出了一种新颖的域距离意识超分辨率(DASR)方法。培训数据(例如$ \ MATHCAL {y}^g $)和测试数据(例如$ \ Mathcal {y}^r $)之间的域间隙使用我们的\ textbf {domain-gap aware triven}和\ textbf {textBf {domain ctextbf {domain cance cance pance cance cance cance pateed加权监督}策略。域间隙意识训练从目标域中的真实数据中获得了额外的好处,而域距离加权监督则使更合理地使用标记的源域数据。提出的方法在合成和实际数据集上进行了验证,实验结果表明,DASR在生成具有更真实和自然纹理的SR输出方面始终优于最先进的无监督SR方法。
These days, unsupervised super-resolution (SR) has been soaring due to its practical and promising potential in real scenarios. The philosophy of off-the-shelf approaches lies in the augmentation of unpaired data, i.e. first generating synthetic low-resolution (LR) images $\mathcal{Y}^g$ corresponding to real-world high-resolution (HR) images $\mathcal{X}^r$ in the real-world LR domain $\mathcal{Y}^r$, and then utilizing the pseudo pairs $\{\mathcal{Y}^g, \mathcal{X}^r\}$ for training in a supervised manner. Unfortunately, since image translation itself is an extremely challenging task, the SR performance of these approaches are severely limited by the domain gap between generated synthetic LR images and real LR images. In this paper, we propose a novel domain-distance aware super-resolution (DASR) approach for unsupervised real-world image SR. The domain gap between training data (e.g. $\mathcal{Y}^g$) and testing data (e.g. $\mathcal{Y}^r$) is addressed with our \textbf{domain-gap aware training} and \textbf{domain-distance weighted supervision} strategies. Domain-gap aware training takes additional benefit from real data in the target domain while domain-distance weighted supervision brings forward the more rational use of labeled source domain data. The proposed method is validated on synthetic and real datasets and the experimental results show that DASR consistently outperforms state-of-the-art unsupervised SR approaches in generating SR outputs with more realistic and natural textures.