论文标题
NonConvex共识ADMM合作车道更改互联车辆的操作
Nonconvex Consensus ADMM for Cooperative Lane Change Maneuvers of Connected Automated Vehicles
论文作者
论文摘要
连接和自动化的车辆(CAVS)具有巨大的潜力,可以在没有通信功能的情况下提高自动车辆(AV)的性能,尤其是在车辆(或代理商)需要合作以完成操作的情况下。通信流量中的车道更改操作,例如,对于非连接的AVS非常具有挑战性。为了减轻这个问题,我们为CAVS提出了一个整体分布的车道变更控制方案,该方案依靠车辆到车辆的通信。最初集中的最佳控制问题嵌入到基于共识的交替方向方法中,以乘数框架以分布式退化的地平线方式解决它。尽管代理动力学导致了基本的最佳控制问题非convex,但我们提出了一个问题重新制定,可以得出收敛保证。在分布式设置中,每个代理都需要在本地解决非线性程序(NLP)。为了获得本地NLP的实时解决方案,我们利用优化引擎打开,该引擎实现了近端平均牛顿方法以进行最佳控制(PANOC)。仿真结果证明了我们方法的功效和实时能力。
Connected and automated vehicles (CAVs) offer huge potential to improve the performance of automated vehicles (AVs) without communication capabilities, especially in situations when the vehicles (or agents) need to be cooperative to accomplish their maneuver. Lane change maneuvers in dense traffic, e.g., are very challenging for non-connected AVs. To alleviate this problem, we propose a holistic distributed lane change control scheme for CAVs which relies on vehicle-to-vehicle communication. The originally centralized optimal control problem is embedded into a consensus-based Alternating Direction Method of Multipliers framework to solve it in a distributed receding horizon fashion. Although agent dynamics render the underlying optimal control problem nonconvex, we propose a problem reformulation that allows to derive convergence guarantees. In the distributed setting, every agent needs to solve a nonlinear program (NLP) locally. To obtain a real-time solution of the local NLPs, we utilize the optimization engine OpEn which implements the proximal averaged Newton method for optimal control (PANOC). Simulation results prove the efficacy and real-time capability of our approach.