论文标题
非线性二阶耦合系统与Phi-Laplacian
Heteroclinic and homoclinic solutions for nonlinear second-order coupled systems with phi-Laplacians
论文作者
论文摘要
在本文中,我们为在实际线上的微分方程的二阶耦合系统中介绍了足够的条件,以实现异斜或同型溶液的存在。我们指出,仅在非线性上假定同态形态的条件,并且不假定生长或渐近条件。该论点利用了固定点理论,l^1-carathéodory函数和Schauder的固定点定理。对两个自由度的二阶非线性耦合系统的申请显示了主要定理的适用性。
In this paper we present sufficient conditions for the existence of heteroclinic or homoclinic solutions for second order coupled systems of differential equations on the real line. We point out that it is required only conditions on the homeomorphisms and no growth or asymptotic conditions are assumed on the nonlinearities. The arguments make use of the fixed point theory, L^1-Carathéodory functions and Schauder's fixed point theorem. An application to a family of second order nonlinear coupled systems of two degrees of freedom, shows the applicability of the main theorem.