论文标题
Bogomolov- Miyaoka的平等性 - 非将来案件中的YAU不平等
Equality in the Bogomolov--Miyaoka--Yau inequality in the non-general type case
论文作者
论文摘要
我们对Dimension N,Kodaira Dimension N-1的所有最小模型X进行了分类,并且使用消失的Chern编号$ C_1^{N-2} C_2(x)= 0 $。这解决了科拉尔的问题。 完成Kollár和Grassi的先前工作,我们还表明有一个通用常数$ε> 0 $,因此任何最小的三倍都满足$ C_1C_2 = 0 $或$ -C_1C_2>ε$。这完全解决了Kollár的猜想。
We classify all minimal models X of dimension n, Kodaira dimension n-1 and with vanishing Chern number $c_1^{n-2}c_2(X)=0$. This solves a problem of Kollár. Completing previous work of Kollár and Grassi, we also show that there is a universal constant $ε>0$ such that any minimal threefold satisfies either $c_1c_2=0$ or $-c_1c_2>ε$. This settles completely a conjecture of Kollár.