论文标题

Jackiw-Teitelboim重力的扭曲器代表

Twistor representation of Jackiw-Teitelboim gravity

论文作者

Wieland, Wolfgang

论文摘要

Jackiw-teitelboim(JT)重力是一个1+1维玩具模型,用于四个时空尺寸的量子重力。在没有物质的情况下,JT重力是拓扑场理论,没有局部可观察到。边界的引入改变了情况。在变成物理边界的自由度(重力边缘模式)之前,是一个非物理仪的方向。从JT重力的BF公式开始,我们为JT重力的边界电荷开发了一个扭曲器表示。我们在批量上介绍点源,并在量子水平上研究耦合的重力和物质系统。准本地能量的本征是由SL(2,r)的单一不可还原表示的张量产物构建的。 ADS2的空斑块的特征是连续串联表示,点源与离散序列有关。物理状态是通过将SL(2,r)表示形式融合到SL(2,R)不变单元的。单元在于约束的内核,在存在分配物质源的情况下,这是惠勒 - 迪维特方程的类似物。

Jackiw-Teitelboim (JT) gravity is a 1+1-dimensional toy model for quantum gravity in four spacetime dimensions. In the absence of matter, JT gravity is a topological field theory and there are no local observables. The introduction of a boundary changes the situation. What was a un-physical gauge direction before turns into a physical boundary degree of freedom (a gravitational edge mode). Starting from the BF formulation of JT gravity, we develop a twistor representation for the boundary charges of JT gravity. We introduce point sources in the bulk and study the coupled gravity plus matter system at the quantum level. Eigenstates of quasi-local energy are built from the tensor product of unitary irreducible representations of SL(2,R). Empty patches of AdS2 are characterised by the continuous series representations, point sources are related to the discrete series. Physical states are constructed by fusing the SL(2,R) representations into an SL(2,R) invariant singlet. The singlet lies in the kernel of the constraints, which are the analogue of the Wheeler-DeWitt equations in the presence of distributional matter sources.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源