论文标题
重型分布的急剧浓度结果
Sharp Concentration Results for Heavy-Tailed Distributions
论文作者
论文摘要
我们获得了具有重尾分布的独立和相同分布的随机变量的总和。我们的浓度结果与随机变量有关,其分布满足$ \ mathbb {p}(x> t)\ leq {\ rm e}^{ - i(t)} $,其中$ i:\ mathbb {r} \ rightArrow \ rightArrow \ rightArrow \ m mathbb {r} $是一个增加的功能和$ i($ i(t) \ infty)$ as $ t \ rightarrow \ infty $。我们的主要定理不仅可以恢复一些现有结果,例如亚韦伯随机变量的浓度,而且还可以为带有较重尾巴的随机变量的总和产生新的结果。我们表明,我们获得的浓度不平等足以为独立随机变量的总和提供较大的偏差结果。我们的基于标准截断参数的分析简化,统一和推广了现有的结果,这些结果是关于重尾随机变量的浓度和较大偏差。
We obtain concentration and large deviation for the sums of independent and identically distributed random variables with heavy-tailed distributions. Our concentration results are concerned with random variables whose distributions satisfy $\mathbb{P}(X>t) \leq {\rm e}^{- I(t)}$, where $I: \mathbb{R} \rightarrow \mathbb{R}$ is an increasing function and $I(t)/t \rightarrow α\in [0, \infty)$ as $t \rightarrow \infty$. Our main theorem can not only recover some of the existing results, such as the concentration of the sum of subWeibull random variables, but it can also produce new results for the sum of random variables with heavier tails. We show that the concentration inequalities we obtain are sharp enough to offer large deviation results for the sums of independent random variables as well. Our analyses which are based on standard truncation arguments simplify, unify and generalize the existing results on the concentration and large deviation of heavy-tailed random variables.