论文标题
物质的量子电动力控制:腔体增强铁电相变
Quantum Electrodynamic Control of Matter: Cavity-Enhanced Ferroelectric Phase Transition
论文作者
论文摘要
轻度 - 物质相互作用可用于定性改变材料的物理特性。最近的理论和实验研究探索了通过强大的经典电磁辐射来驱动多体系统来控制物质的可能性,从而导致时间依赖于电子或晶格自由度的哈密顿量。为了避免不可避免的加热,到目前为止,具有超短激光脉冲的泵探针设置已用于研究瞬态光诱导的材料修饰。在这里,我们通过修改其电磁环境的量子波动来追求控制量子物质的另一个方向。与对光增强电子电子相互作用的早期提议相反,我们考虑了嵌入由金属镜组成的腔体中的偶极量子多体系统,并制定了理论框架,以根据量子光 - 量子相互作用的基础来操纵其平衡性能。我们分析了不同类型的基本激发的杂交,包括偶极声子,腔体光子和金属镜中的等离子,这是由于强烈的光 - 含量相互作用的腔体限制引起的。这种杂交在定性上改变了集体激发的性质,可用于选择性地控制各种平台的能量级结构。最值得注意的是,在量子 - 副细胞中,我们表明,与散装材料相比,腔诱导的红外光学声子的软化增强了铁电相。我们的发现表明,通过轻度耦合而无需外部抽水来诱导超级型过渡的一种有趣的可能性。我们还讨论了对分子材料和激发设备的集体激发中腔诱导的修改的可能应用。
The light-matter interaction can be utilized to qualitatively alter physical properties of materials. Recent theoretical and experimental studies have explored this possibility of controlling matter by light based on driving many-body systems via strong classical electromagnetic radiation, leading to a time-dependent Hamiltonian for electronic or lattice degrees of freedom. To avoid inevitable heating, pump-probe setups with ultrashort laser pulses have so far been used to study transient light-induced modifications in materials. Here, we pursue yet another direction of controlling quantum matter by modifying quantum fluctuations of its electromagnetic environment. In contrast to earlier proposals on light-enhanced electron-electron interactions, we consider a dipolar quantum many-body system embedded in a cavity composed of metal mirrors, and formulate a theoretical framework to manipulate its equilibrium properties on the basis of quantum light-matter interaction. We analyze hybridization of different types of the fundamental excitations, including dipolar phonons, cavity photons, and plasmons in metal mirrors, arising from the cavity confinement in the regime of strong light-matter interaction. This hybridization qualitatively alters the nature of the collective excitations and can be used to selectively control energy-level structures in a wide range of platforms. Most notably, in quantum paraelectrics, we show that the cavity-induced softening of infrared optical phonons enhances the ferroelectric phase in comparison with the bulk materials. Our findings suggest an intriguing possibility of inducing a superradiant-type transition via the light-matter coupling without external pumping. We also discuss possible applications of the cavity-induced modifications in collective excitations to molecular materials and excitonic devices.