论文标题

多麦霍拉纳三端约瑟夫森连接的节点Andreev光谱

Nodal Andreev Spectra in Multi-Majorana Three-Terminal Josephson Junctions

论文作者

Sakurai, Keimei, Mercaldo, Maria Teresa, Kobayashi, Shingo, Yamakage, Ai, Ikegaya, Satoshi, Habe, Tetsuro, Kotetes, Panagiotis, Cuoco, Mario, Asano, Yasuhiro

论文摘要

我们研究了三端约瑟夫森连接的Andreev结合状态(ABS)光谱,该光谱由1D拓扑超导体(TSC)组成,该拓扑超导体(TSC)具有由手性符号对称性保护的多个零能量边缘界面(MBSS)。我们的理论分析依赖于Bogoliubov-De Gennes(BDG)Hamiltonian的精确数值对角线化,描述了三个相互接触的TSC,并仅基于有效的低能描述,仅基于在界面MBS的耦合之前就引起了领先者的接触。考虑到由两个独立的超导相位差异跨越的2D合成空间,我们证明了ABS光谱可能包含点或线节点,并识别$ \ Mathbb {z} _2 $拓扑不变性以对其进行分类。我们表明,所得类型的节点取决于先前存在的界面MBS的数量,当两个TSC具有不平等数量的MBS时,淋巴线一定会出现。具体而言,界面MBS的精确数量确定了相位差异$2π$ slidings频谱的周期性,结果还控制了合成空间中节点线的形状。当保留手性对称性时,线条是打开的,并与高对称线的合成空间一致,而当违反线时,线也可以转换为环和链条。由于BDG Hamiltonian的固有粒子 - 孔对称性,淋巴结光谱是可靠的,并产生了我们所识别的独特实验特征。

We investigate the Andreev-bound-state (ABS) spectra of three-terminal Josephson junctions which consist of 1D topological superconductors (TSCs) harboring multiple zero-energy edge Majorana bound states (MBSs) protected by chiral symmetry. Our theoretical analysis relies on the exact numerical diagonalization of the Bogoliubov-de Gennes (BdG) Hamiltonian describing the three interfaced TSCs, complemented by an effective low-energy description solely based on the coupling of the interfacial MBSs arising before the leads get contacted. Considering the 2D synthetic space spanned by the two independent superconducting phase differences, we demonstrate that the ABS spectra may contain either point or line nodes, and identify $\mathbb{Z}_2$ topological invariants to classify them. We show that the resulting type of nodes depends on the number of preexisting interfacial MBSs, with nodal lines necessarily appearing when two TSCs harbor an unequal number of MBSs. Specifically, the precise number of interfacial MBSs determines the periodicity of the spectrum under $2π$-slidings of the phase differences and, as a result, also controls the shape of the nodal lines in synthetic space. When chiral symmetry is preserved, the lines are open and coincide with high-symmetry lines of synthetic space, while when it is violated the lines can also transform into loops and chains. The nodal spectra are robust by virtue of the inherent particle-hole symmetry of the BdG Hamiltonian, and give rise to distinctive experimental signatures that we identify.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源