论文标题
Oneshot全球本地化:即时激光镜头姿势估计
OneShot Global Localization: Instant LiDAR-Visual Pose Estimation
论文作者
论文摘要
在给定地图中的全球本地化是机器人执行各种自主导航任务的关键能力。本文介绍了Oneshot-一种全局本地化算法,一次仅使用单个3D LIDAR扫描,而基于集成一系列点云的表现优于表现的方法。我们的方法不需要机器人移动,它依赖于点云段的基于学习的描述符,并在地图中计算完整的6自由度姿势。从当前的激光雷达扫描中提取段,并使用计算的描述符与数据库匹配。然后通过几何一致性测试对候选匹配进行验证。我们还提出了一种策略,以通过相机提供的视觉信息来增强细分市场描述的性能。为此,提出了定制的神经网络体系结构。我们证明,我们的仅限激光措施的方法优于Kitti数据集的序列上的最先进的基线,并且还评估了其在具有挑战性的NCLT数据集中的性能。最后,我们表明,与仅激光雷达的描述相比,视觉信息的融合将段的检索率提高了26%。
Globally localizing in a given map is a crucial ability for robots to perform a wide range of autonomous navigation tasks. This paper presents OneShot - a global localization algorithm that uses only a single 3D LiDAR scan at a time, while outperforming approaches based on integrating a sequence of point clouds. Our approach, which does not require the robot to move, relies on learning-based descriptors of point cloud segments and computes the full 6 degree-of-freedom pose in a map. The segments are extracted from the current LiDAR scan and are matched against a database using the computed descriptors. Candidate matches are then verified with a geometric consistency test. We additionally present a strategy to further improve the performance of the segment descriptors by augmenting them with visual information provided by a camera. For this purpose, a custom-tailored neural network architecture is proposed. We demonstrate that our LiDAR-only approach outperforms a state-of-the-art baseline on a sequence of the KITTI dataset and also evaluate its performance on the challenging NCLT dataset. Finally, we show that fusing in visual information boosts segment retrieval rates by up to 26% compared to LiDAR-only description.