论文标题

最佳的liouville定理,用于超线性抛物线问题

Optimal Liouville theorems for superlinear parabolic problems

论文作者

Quittner, Pavol

论文摘要

liouville定理用于扩展不变的非线性抛物线方程和系统(说明方程或系统没有正面解决方案)保证相关初始和初始有限价值问题的解决方案的最佳通用估计值。在非线性热方程式中,$$ u_t-Δu= u^p \ quad \ hbox {in} \ quad {r}^n \ times {r},\ qquad p> 1,$ quad p>,$ $ $ qubud在$ p(n-2)<n+2 $ n+dmimits中的积极解决方案的非X $ n+2 $ domutive to n o a n+dmitive a in domitive a in dositive o o n domitive均可命名为domptive n domitive A domitive o n o.在$ p $上或处理特殊类别的解决方案(与时间无关或径向对称或满足适当的衰减条件)。我们解决了这个开放问题,并且通过使用相同的参数,我们还证明了一类超线抛物线系统的最佳liouville定理。在非线性热方程式的情况下,我们的liouville定理的直接应用解决了几个相关的长期问题。例如,它们保证了对古代解决方案的最佳liouville定理,对couchy问题的全球解决方案的最佳衰减估计值,非convex域中解决方案的最佳爆炸速率估计,以及相应初始有限价值问题的最佳通用估计。我们主要结果的证明是基于适当重新恢复的解决方案的精制能量估计。

Liouville theorems for scaling invariant nonlinear parabolic equations and systems (saying that the equation or system does not possess positive entire solutions) guarantee optimal universal estimates of solutions of related initial and initial-boundary value problems. In the case of the nonlinear heat equation $$u_t-Δu=u^p\quad\hbox{in}\quad {R}^n\times{R}, \qquad p>1, $$ the nonexistence of positive classical solutions in the subcritical range $p(n-2)<n+2$ has been conjectured for a long time, but all known results require either a more restrictive assumption on $p$ or deal with a special class of solutions (time-independent or radially symmetric or satisfying suitable decay conditions). We solve this open problem and -- by using the same arguments -- we also prove optimal Liouville theorems for a class of superlinear parabolic systems. In the case of the nonlinear heat equation, straightforward applications of our Liouville theorem solve several related long-standing problems. For example, they guarantee an optimal Liouville theorem for ancient solutions, optimal decay estimates for global solutions of the coresponding Cauchy problem, optimal blow-up rate estimate for solutions in non-convex domains, optimal universal estimates for solutions of the corresponding initial-boundary value problems. The proof of our main result is based on refined energy estimates for suitably rescaled solutions.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源