论文标题

关于多项式一致性对根的联合分布

On the Joint Distribution of the Roots of Pairs of Polynomial Congruences

论文作者

Zehavi, Sa'ar

论文摘要

令f(x)为原始的不可理用多项式,其整数系数大于一个。 1964年,Hooley表明,归一化根的序列U/N的序列,其中f(u)= 0(n)以明显的方式排序是均匀分布的模量。本文的目的是表明,如果f(x)和g(x)是一对原始的不可理用的多项式,该程度的多项式大于一个,而不一定是不同的,则序列(u/n,v/n),f(u/n,v/n),f(u)= 0(u)= 0(u)= 0(n)和g(n)和g(n)和g(v)= 0(n),以明显的方式订购,是一个统一分布的modullo nim nim nim nim nim nim nim nim nim nim。

Let f(x) be a primitive irreducible polynomial with integer coefficients of degree greater than one. In 1964, Hooley showed that the sequence of normalized roots u/n, where f(u) = 0(n), ordered in the obvious way, is uniformly distributed modulo one. It is the goal of this paper to show that if f(x) and g(x) are a pair of primitive irreducible polynomials of degree greater than one, not necessarily distinct, then the sequence (u/n,v/n), with f(u) = 0(n) and g(v) = 0(n), ordered in the obvious way, is uniformly distributed modulo one in the unit torus.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源