论文标题
多源域适应的相互学习网络
Mutual Learning Network for Multi-Source Domain Adaptation
论文作者
论文摘要
早期无监督的域适应性(UDA)方法主要假定单个源域的设置,其中所有标记的源数据都来自同一分布。但是,实际上,标记的数据可以来自具有不同分布的多个源域。在这种情况下,由于需要设计域跨不同源域的域移动,因此需要设计单源域的适应方法,并且需要设计多源域的适应方法。在本文中,我们提出了一种新型的多源域适应方法,用于多个源域适应性(ML-MSDA)的相互学习网络。在相互学习的框架下,提出的方法将目标域与每个单个源域配对,以训练条件对抗域的适应网络作为分支网络,同时将这对组合的多源域和目标域和目标域和训练条件对抗性适应网络训练作为指导网络。多个分支网络与指导网络一致,以通过对相应目标数据上的预测概率分布来实施JS-Divergence正则化来实现相互学习。我们对多个多源域适应基准数据集进行了广泛的实验。结果表明,所提出的ML-MSDA方法的表现优于比较方法,并实现了最先进的性能。
Early Unsupervised Domain Adaptation (UDA) methods have mostly assumed the setting of a single source domain, where all the labeled source data come from the same distribution. However, in practice the labeled data can come from multiple source domains with different distributions. In such scenarios, the single source domain adaptation methods can fail due to the existence of domain shifts across different source domains and multi-source domain adaptation methods need to be designed. In this paper, we propose a novel multi-source domain adaptation method, Mutual Learning Network for Multiple Source Domain Adaptation (ML-MSDA). Under the framework of mutual learning, the proposed method pairs the target domain with each single source domain to train a conditional adversarial domain adaptation network as a branch network, while taking the pair of the combined multi-source domain and target domain to train a conditional adversarial adaptive network as the guidance network. The multiple branch networks are aligned with the guidance network to achieve mutual learning by enforcing JS-divergence regularization over their prediction probability distributions on the corresponding target data. We conduct extensive experiments on multiple multi-source domain adaptation benchmark datasets. The results show the proposed ML-MSDA method outperforms the comparison methods and achieves the state-of-the-art performance.