论文标题

电动汽车的能源消耗估算模型的审查和前景

A Review and Outlook of Energy Consumption Estimation Models for Electric Vehicles

论文作者

Chen, Yuche, Wu, Guoyuan, Sun, Ruixiao, Dubey, Abhishek, Laszka, Aron, Pugliese, Philip

论文摘要

电动汽车(EV)对于向低碳运输系统的过渡至关重要。成功采用电动汽车在很大程度上取决于能够准确,可靠地估计用电的能源消耗模型。本文回顾了EV能源消耗模型的最先进,旨在为EV应用的未来开发提供指导。我们将EV能源消耗的影响变量汇总为四类:车辆组件,车辆动态,交通和与环境相关的因素。我们根据建模量表(微观与宏观)和方法(数据驱动与基于规则)的模型量表(微观与宏观)进行分类和讨论。我们的综述显示了增加宏观模型的趋势,这些模型可用于估计旅行级EV级别的能源消耗和增加数据驱动的模型,这些模型利用机器学习技术来估算基于大容量现实世界数据的EV能量消耗。我们确定了EV能源消耗模型的研究差距,包括开发除个人车辆以外的其他模式(例如电动公交车,电动卡车和电动非道路车辆)的能源估计模型;适用于与车辆到网格集成相关的应用的能源估计模型的开发;以及多尺度能量估计模型作为整体建模方法的开发。

Electric vehicles (EVs) are critical to the transition to a low-carbon transportation system. The successful adoption of EVs heavily depends on energy consumption models that can accurately and reliably estimate electricity consumption. This paper reviews the state-of-the-art of EV energy consumption models, aiming to provide guidance for future development of EV applications. We summarize influential variables of EV energy consumption into four categories: vehicle component, vehicle dynamics, traffic and environment related factors. We classify and discuss EV energy consumption models in terms of modeling scale (microscopic vs. macroscopic) and methodology (data-driven vs. rule-based). Our review shows trends of increasing macroscopic models that can be used to estimate trip-level EV energy consumption and increasing data-driven models that utilized machine learning technologies to estimate EV energy consumption based on large volume real-world data. We identify research gaps for EV energy consumption models, including the development of energy estimation models for modes other than personal vehicles (e.g., electric buses, electric trucks, and electric non-road vehicles); the development of energy estimation models that are suitable for applications related to vehicle-to-grid integration; and the development of multi-scale energy estimation models as a holistic modeling approach.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源