论文标题

通过利用边缘检测,用于立方体形对象的精制平面分割

Refined Plane Segmentation for Cuboid-Shaped Objects by Leveraging Edge Detection

论文作者

Naumann, Alexander, Dörr, Laura, Salscheider, Niels Ole, Furmans, Kai

论文摘要

单个RGB图像的平面分割区域的最新进展显示出强烈的准确性提高,现在可以将室内场景的可靠分割成平面。尽管如此,这些分割面罩的细节细节仍然缺乏准确性,因此在许多应用中限制了此类技术在众多应用中的可用性,例如用于增强现实用例的介绍。我们提出了一种后处理算法,以将分段的平面掩模与图像中检测到的边缘对齐。这使我们能够提高最新方法的准确性,同时将自己限制在立方体形状的物体中。我们的方法是由物流激励的,在该物流中,该假设是有效的,并且可以使用精制的平面来执行强大的对象检测,而无需进行监督学习。两个基准和我们的方法的结果在我们自己的数据集上报告,我们公开可用。结果表明,对最先进的情况有一致的改善。研究了先前的分割和边缘检测的影响,最后提出了未来研究的领域。

Recent advances in the area of plane segmentation from single RGB images show strong accuracy improvements and now allow a reliable segmentation of indoor scenes into planes. Nonetheless, fine-grained details of these segmentation masks are still lacking accuracy, thus restricting the usability of such techniques on a larger scale in numerous applications, such as inpainting for Augmented Reality use cases. We propose a post-processing algorithm to align the segmented plane masks with edges detected in the image. This allows us to increase the accuracy of state-of-the-art approaches, while limiting ourselves to cuboid-shaped objects. Our approach is motivated by logistics, where this assumption is valid and refined planes can be used to perform robust object detection without the need for supervised learning. Results for two baselines and our approach are reported on our own dataset, which we made publicly available. The results show a consistent improvement over the state-of-the-art. The influence of the prior segmentation and the edge detection is investigated and finally, areas for future research are proposed.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源