论文标题

客观的多变量分类和生物神经元网络的推断

Objective Multi-variable Classification and Inference of Biological Neuronal Networks

论文作者

Barros, Michael Taynnan, Siljak, Harun, Mullen, Peter, Papadias, Constantinos, Hyttinen, Jari, Marchetti, Nicola

论文摘要

生物神经元类型和网络的分类为对大脑组织和功能的全面理解带来了挑战。在本文中,我们根据神经元的通信指标开发了一种新型的生物神经元类型和网络的客观分类模型。由于相互信息或从尖峰列车获得的神经元之间的延迟是更丰富的数据,与常规形态学数据相比,这给出了现有方法的优势。我们首先设计了两个开放式访问,支持来自蓝脑项目现实模型的各种神经元电路的计算平台,称为Neurpy和Neurgen。然后,我们研究了如何使用皮质神经元回路来实现网络断层扫描的概念,以进行神经元的形态,拓扑和电分类。我们将模拟数据提取到许多不同的分类器(包括SVM,决策树,随机森林和人工神经元网络),将特定的细胞类型(和子组类型)分类为最高70 \%。使用网络断层扫描的生物网络结构的推断最多达到了精度的65%。我们还分析了五层,25个细胞M型和14个细胞E型的分类的回忆,精度和F1SCORE。我们的研究不仅有助于现有的分类工作,而且为未来使用细胞尺度脑机界面的使用设定了道路图,以作为对神经元的体内客观分类作为大脑结构的感应机制。

Classification of biological neuron types and networks poses challenges to the full understanding of the brain's organisation and functioning. In this paper, we develop a novel objective classification model of biological neuronal types and networks based on the communication metrics of neurons. This presents advantages against the existing approaches since the mutual information or the delay between neurons obtained from spike trains are more abundant data compare to conventional morphological data. We firstly designed two open-access supporting computational platforms of various neuronal circuits from the Blue Brain Project realistic models, named Neurpy and Neurgen. Then we investigate how the concept of network tomography could be achieved with cortical neuronal circuits for morphological, topological and electrical classification of neurons. We extract the simulated data to many different classifiers (including SVM, Decision Trees, Random Forest, and Artificial Neuron Networks) classifying the specific cell type (and sub-group types) achieving accuracies of up to 70\%. Inference of biological network structures using network tomography reached up to 65\% of accuracy. We also analysed recall, precision and F1score of the classification of five layers, 25 cell m-types, and 14 cell e-types. Our research not only contributes to existing classification efforts but sets the road-map for future usage of cellular-scaled brain-machine interfaces for in-vivo objective classification of neurons as a sensing mechanism of the brain's structure.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源