论文标题
潘多拉的盒子盖:几何形状在明显的地平线附近
Pandora's box lid: geometry near the apparent horizon
论文作者
论文摘要
地平线界定的被困地区是黑洞的定义特征。但是,在遥远观察者的有限时间内形成无奇异性的明显范围,仅与特殊的几何形状和附近的物质状态一致。在球形对称性中,这种视野仅存在于爱因斯坦方程的两类溶液中。两者都违反了无效的能源条件(NEC),并允许扩大和收缩被困地区。但是,不断扩大的被困地区导致防火墙。越过该防火墙的观察者的能量密度的加权时间平均值为负,并且超过了量子场可能产生的最大NEC违规行为。结果,黑洞只能蒸发,或者半经典的物理学已经在地平线上分解。收缩捕获区域的几何形状接近gaidya公制的质量减少。只有一类解决方案可以使测试粒子越过明显的视野,并使薄的壳塌陷成黑洞。这些结果显着限制了常规黑洞模型。只有在远离半经典物理学的显着偏离时,才能实现具有规则物质特性的模型。 Hayward-Frolov模型可能仅描述蒸发,但不能描述常规黑洞的形成。
Trapped regions bounded by horizons are the defining features of black holes. However, formation of a singularity-free apparent horizon in finite time of a distant observer is consistent only with special states of geometry and matter in its vicinity. In spherical symmetry such horizons exist only in two classes of solutions of the Einstein equations. Both violate the null energy condition (NEC) and allow for expanding and contracting trapped regions. However, an expanding trapped region leads to a firewall. The weighted time average of the energy density for an observer crossing this firewall is negative and exceeds the maximal NEC violation that quantum fields can produce. As a result, either black holes only can evaporate or the semiclassical physics breaks down already at the horizons. Geometry of a contracting trapped region approaches the ingoing Vaidya metric with decreasing mass. Only one class of solutions allows for a test particle to cross the apparent horizon, and for a thin shell to collapse into a black hole. These results significantly constrain the regular black hole models. Models with regular matter properties at the horizon can be realized only if significant departures from the semiclassical physics occur already at the horizon scale. The Hayward-Frolov model may describe only evaporation, but not formation of a regular black hole.