论文标题
最佳收敛速率调谐的杂化不均匀细分表面
Tuned Hybrid Non-Uniform Subdivision Surfaces with Optimal Convergence Rates
论文作者
论文摘要
本文介绍了我们以前的工作,即混合非均匀细分表面[19]的增强版本,以在等几年分析中实现最佳的收敛速率。我们引入了一个参数$λ$($ \ frac {1} {4}<λ<1 $)来控制不规则区域的收缩率,因此该方法称为调用混合杂种非均匀分子(THNUS)。我们以前的工作对应于$λ= \ frac {1} {2} $时的情况。尽管引入$λ$的混合细分,这显着使$ g^1 $连续性的理论证据显着复杂化,但在调谐的混合分支功能中,减少$λ$可以恢复最佳收敛速率。从几何学的角度来看,在不均匀的参数化下,Thnus保留了与[19]相当的形状质量。它的基础函数是可以改进的,几何映射在细化过程中保持不变。此外,我们证明了一个调谐的混合细分表面在全球范围内$ g^1 $ - 连续。从分析的角度来看,统一的非负分区形成了全球线性独立,并且它们的样条空间是嵌套的。我们从数值上证明,基本函数可以通过在非凡顶点周围的非均匀参数化来实现泊松问题的最佳收敛速率。
This paper presents an enhanced version of our previous work, hybrid non-uniform subdivision surfaces [19], to achieve optimal convergence rates in isogeometric analysis. We introduce a parameter $λ$ ($\frac{1}{4}<λ<1$) to control the rate of shrinkage of irregular regions, so the method is called tuned hybrid non-uniform subdivision (tHNUS). Our previous work corresponds to the case when $λ=\frac{1}{2}$. While introducing $λ$ in hybrid subdivision significantly complicates the theoretical proof of $G^1$ continuity around extraordinary vertices, reducing $λ$ can recover the optimal convergence rates when tuned hybrid subdivision functions are used as a basis in isogeometric analysis. From the geometric point of view, the tHNUS retains comparable shape quality as [19] under non-uniform parameterization. Its basis functions are refinable and the geometric mapping stays invariant during refinement. Moreover, we prove that a tuned hybrid subdivision surface is globally $G^1$-continuous. From the analysis point of view, tHNUS basis functions form a non-negative partition of unity, are globally linearly independent, and their spline spaces are nested. We numerically demonstrate that tHNUS basis functions can achieve optimal convergence rates for the Poisson's problem with non-uniform parameterization around extraordinary vertices.