论文标题
一种加速的表面积分方程方法,用于用于任意电导率的介电和有损物体的电磁建模
An Accelerated Surface Integral Equation Method for the Electromagnetic Modeling of Dielectric and Lossy Objects of Arbitrary Conductivity
论文作者
论文摘要
表面积分方程(SIE)方法对于在存在均匀对象的情况下的麦克斯韦方程的数值解决方案引起了极大的兴趣。但是,现有的SIE算法在可扩展性,频率范围或材料属性方面具有局限性。我们基于广义阻抗边界条件提出了可扩展的SIE算法,该算法可以在广泛的电导率,大小和频率上以统一的方式有效地处理介电和导体。我们通过有效的预处理和特定于对象的自适应积分方法设计了一种有效的策略,以实现所得方程的迭代解决方案。通过严格的误差分析,我们证明了自适应积分方法可以在各种频率和电导率上应用。来自不同应用的几个数值示例证明了所提出算法的准确性和效率。
Surface integral equation (SIE) methods are of great interest for the numerical solution of Maxwell's equations in the presence of homogeneous objects. However, existing SIE algorithms have limitations, either in terms of scalability, frequency range, or material properties. We present a scalable SIE algorithm based on the generalized impedance boundary condition which can efficiently handle, in a unified manner, both dielectrics and conductors over a wide range of conductivity, size and frequency. We devise an efficient strategy for the iterative solution of the resulting equations, with efficient preconditioners and an object-specific use of the adaptive integral method. With a rigorous error analysis, we demonstrate that the adaptive integral method can be applied over a wide range of frequencies and conductivities. Several numerical examples, drawn from different applications, demonstrate the accuracy and efficiency of the proposed algorithm.