论文标题
学习多尺度照片曝光校正
Learning Multi-Scale Photo Exposure Correction
论文作者
论文摘要
捕获错误暴露的照片仍然是基于摄像机成像的主要错误。曝光问题被归类为:(i)摄像机暴露太长,导致明亮而被冲洗的图像区域,或(ii)曝光太短,导致暴露太短,导致黑暗区域导致曝光。不足和过度暴露都大大降低了图像的对比度和视觉吸引力。先前的工作主要集中于未充满活力的图像或一般图像增强。相比之下,我们提出的方法针对照片中的过度和不遭受的误差。我们将暴露校正问题提出为两个主要子问题:(i)颜色增强和(ii)详细信息增强。因此,我们提出了一个可以以端到端方式训练的粗到精细的深神经网络(DNN)模型,该模型分别解决了每个子问题。解决方案的一个关键方面是一个新的数据集,该数据集的24,000张图像显示,迄今为止,迄今为止,具有相应的适当曝光图像的最广泛的曝光值范围。我们的方法与未经充实的图像的现有最新方法相同,并为患有过度暴露误差的图像带来了重大改进。
Capturing photographs with wrong exposures remains a major source of errors in camera-based imaging. Exposure problems are categorized as either: (i) overexposed, where the camera exposure was too long, resulting in bright and washed-out image regions, or (ii) underexposed, where the exposure was too short, resulting in dark regions. Both under- and overexposure greatly reduce the contrast and visual appeal of an image. Prior work mainly focuses on underexposed images or general image enhancement. In contrast, our proposed method targets both over- and underexposure errors in photographs. We formulate the exposure correction problem as two main sub-problems: (i) color enhancement and (ii) detail enhancement. Accordingly, we propose a coarse-to-fine deep neural network (DNN) model, trainable in an end-to-end manner, that addresses each sub-problem separately. A key aspect of our solution is a new dataset of over 24,000 images exhibiting the broadest range of exposure values to date with a corresponding properly exposed image. Our method achieves results on par with existing state-of-the-art methods on underexposed images and yields significant improvements for images suffering from overexposure errors.