论文标题
$*$ - jodan-type地图$ c^{*} $ - 代数
$*$-Lie-Jordan-type maps on $C^{*}$-algebras
论文作者
论文摘要
让A和A分别为具有I_A和I_A'身份的两个CSTAR-ELGEBRA,以及P_1和P_2 = I_A-P_1-P_1非平凡投影。在本文中,我们研究了这些映射的多词的表征,在这里,这些映射的概念在此处出现。特别是,如果M_A是von Neumann代数相对CSTAR-Elgebra A,而没有I_1型中心列出的中心列出,则每个BEXTIVE UNITAL UNITARE乘法性星形lie-Jordan-Jordan-type Maps都是星环是同构的。
Let A and A' be two Cstar-algebras with identities I_A and I_A', respectively, and P_1 and P_2 = I_A - P_1 nontrivial projections in A. In this paper we study the characterization of multiplicative star-Lie-Jordan-type maps, where the notion of these maps arise here. In particular, if M_A is a von Neumann algebra relative Cstar-algebra A without central summands of type I_1 then every bijective unital multiplicative star-Lie-Jordan-type maps are star-ring isomorphisms.