论文标题
Hölder的连续性解决方案的一类漂移扩散方程
Hölder continuity of solutions for a class of drift-diffusion equations
论文作者
论文摘要
我们为非均匀的漂移扩散方程提供了一些规律性的结果,并应用了一般耗散SQG的应用。我们的结果以相当简单的方式统一了几个以前已知的结果。我们对代数身份(对于精制的能源论证)建立估计值,该代数身份将任何积分运算符与拉普拉斯主义者的纯粹力量相关联。
We provide several regularity results for non-homogeneous drift-diffusion equations with applications to general dissipative SQG. Our results unify in a rather simple way several previously known results. We build the estimates on an algebraic identity (for the refined energy argument) which relates any integral operator with pure powers of the laplacian.