论文标题

第一原理研究Amnbi(a = k,rb,cs)的批量和二维结构 - 家族材料

First-principles study on the bulk and two-dimensional structures of AMnBi(A =K, Rb, Cs)-family materials

论文作者

Zhu, Ziming, Liao, Chunyan, Li, Si, Zhang, Xiaoming, Wu, Weikang, Yu, Zhi-Ming, Yu, Rui, Zhang, Wei, Yang, Shengyuan A.

论文摘要

从基本角度和应用的角度来看,具有较高迁移率的磁性材料是研究的引人入胜的主题。基于第一原则计算,我们研究了已经合成的Amnbi(a = k,rb,cs)材料的物理特性。我们表明这些材料是抗磁磁性(AFM)的,NEEL温度高于300K。它们包含AFM订购的MN层,而层间偶联的变化从KMNBI到AFM的Ferromagnetic(FM)对于RBMNBI和CSMNBI。我们发现这些材料是狭窄的间隙半导体。由于较小的有效质量,电子载体的迁移率可能很高,对于KMNBI来说,电子载体迁移率最高可达100,000 cm2/(vs)。相比之下,孔迁移率被大大抑制,通常降低了两个数量级。我们进一步研究了它们的二维(2D)单层结构,这些结构是AFM,其迁移率相当高(1000 cm2/(vs))。他们的尿素温度仍然可以达到室温。有趣的是,我们发现磁相跃迁还伴随着金属 - 绝缘体相变,而顺磁性金属相具有一对非对称性的2D旋转式摩擦点。此外,磁性可以通过施加的应变有效控制。当磁性排序变成FM时,系统可以成为具有无间隙性手性边缘状态的量子异常的绝缘子。

Magnetic materials with high mobilities are intriguing subject of research from both fundamental and application perspectives. Based on first-principle calculations, we investigate the physical properties of the already synthesized AMnBi(A =K, Rb, Cs)-family materials. We show that these materials are antiferromagnetic (AFM), with Neel temperatures above 300 K. They contain AFM ordered Mn layers, while the interlayer coupling changes from ferromagnetic (FM) for KMnBi to AFM for RbMnBi and CsMnBi. We find that these materials are narrow gap semiconductors. Owing to the small effective mass, the electron carrier mobility can be very high, reaching up to 100,000 cm2/(Vs) for KMnBi. In contrast, the hole mobility is much suppressed, typically lower by two orders of magnitude. We further study their two-dimensional (2D) single layer structures, which are found be AFM with fairly high mobility (1000 cm2/(Vs)). Their Neel temperatures can still reach room temperature. Interesting, we find that the magnetic phase transition is also accompanied by a metal-insulator phase transition, with the paramagnetic metal phase possessing a pair of nonsymmorphic-symmetry-protected 2D spin-orbit Dirac points. Furthermore, the magnetism can be effectively controlled by the applied strain. When the magnetic ordering is turned into FM, the system can become a quantum anomalous Hall insulator with gapless chiral edge states.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源