论文标题

多元矩阵Mittag- leffler分布

Multivariate Matrix Mittag--Leffler distributions

论文作者

Albrecher, Hansjoerg, Bladt, Martin, Bladt, Mogens

论文摘要

我们扩展了多元相型分布的构造原理,以建立一类可分析的重尾多元随机变量,其边际分布是具有常规变化指数的Mittag-Leffler类型。该结构本质上可以看作是允许标量参数成为矩阵值。在所有多变量正随机变量中,分布类别均具有致密,因此为在各个应用领域的重型尾部(但无关)的风险进行了多功能候选者。

We extend the construction principle of multivariate phase-type distributions to establish an analytically tractable class of heavy-tailed multivariate random variables whose marginal distributions are of Mittag-Leffler type with arbitrary index of regular variation. The construction can essentially be seen as allowing a scalar parameter to become matrix-valued. The class of distributions is shown to be dense among all multivariate positive random variables and hence provides a versatile candidate for the modelling of heavy-tailed, but tail-independent, risks in various fields of application.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源