论文标题

3D异质各向异性媒体中的本亚特人:第六部分 - 动态,拉格朗日与汉密尔顿的方法

Eigenrays in 3D heterogeneous anisotropic media: Part VI -- Dynamics, Lagrangian vs. Hamiltonian approaches

论文作者

Ravve, Igor, Koren, Zvi

论文摘要

在这项研究的V部分中,我们通过求解了线性的二阶Jacobi微分方程,提出了一种原始的Lagrangian方法,用于计算沿固定光线的动态特性,将四组初始条件作为基本解决方案。然后,我们重点介绍了苛性剂的几何扩散和识别的计算,其中仅需要两个及其相应初始条件的基本解决方案。雅各比方程的溶液代表了近距离射线的正常移位向量,并定义了相对于固定中央射线的射线管的几何形状。传统上,动态特征不是通过两个一阶微分方程来制定的,而不是拉格朗日的方法,而是通过哈密顿量方法计算,其中解决方案变量是近距离移动和沿射线沿线的近去慢速变化的变化。在此部分(第六部分)中,我们比较并关联了两种方法。我们首先将两个一阶哈密顿动态方程组合在一起,从而消除了缓慢向量的近端变化。这仅仅是仅哈密顿偏移而导致二阶微分方程,其射线正常与相应的拉格朗日溶液的正常移位一致,而射线缝线分量不影响Jacobian和几何分布。将所提出的拉格朗日方法与“经典”哈密顿式方法的动态射线追踪进行比较,我们证明它们对于一般各向异性是完全兼容的。然后,我们得出了哈密顿人和拉格朗日人的黑森人之间的双向关系,这是动态射线理论的核心计算要素。最后,对于一般的三斜介质,我们在数值上证明了这两种类型的Hessians之间的关系。

In Part V of this study, we presented an original Lagrangian approach for computing the dynamic characteristics along stationary rays, by solving the linear, second-order Jacobi differential equation, considering four sets of initial conditions as the basic solutions. We then focused on the computation of the geometric spreading and identification of caustics, where only the two point-source basic solutions with their corresponding initial conditions are required. Solutions of the Jacobi equation represent the normal shift vectors of the paraxial rays and define the geometry of the ray tube with respect to the stationary central ray. Rather than the Lagrangian approach, the dynamic characteristics are traditionally computed with the Hamiltonian approach, formulated normally in terms of two first-order differential equations, where the solution variables are the paraxial shifts and paraxial slowness changes along the ray. In this part (Part VI), we compare and relate the two approaches. We first combine the two first-order Hamiltonian dynamic equations, eliminating the paraxial variations of the slowness vector. This leads to a second-order differential equation in terms of the Hamiltonian shift alone, whose ray-normal counterpart coincides with the normal shift of the corresponding Lagrangian solution, while the ray-tangent component does not affect the Jacobian and the geometric spreading. Comparing the proposed Lagrangian approach to the dynamic ray tracing with the "classical" Hamiltonian approach, we demonstrate that they are fully compatible for general anisotropy. We then derive the two-way relationships between the Hamiltonian's and Lagrangian's Hessians, which are the core computational elements of dynamic ray theory. Finally, we demonstrate the relationships between these two types of the Hessians numerically, for a general triclinic medium.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源