论文标题
带有端到端边缘增强gan和对象检测器网络的遥感图像中的小对象检测
Small-Object Detection in Remote Sensing Images with End-to-End Edge-Enhanced GAN and Object Detector Network
论文作者
论文摘要
与大对象相比,遥感图像中小物体的检测性能并不令人满意,尤其是在低分辨率和嘈杂的图像中。一种称为增强的超分辨率GAN(ESRGAN)的基于生成的对抗网络(GAN)的模型显示出显着的图像增强性能,但重建的图像错过了高频边缘信息。因此,在恢复的嘈杂和低分辨率遥感图像上,对象检测性能降低了小物体的降解。受到Edge Enghanced Gan(Eegan)和Esrgan的成功的启发,我们应用了新的边缘增强的超分辨率GAN(EESRGAN),以提高遥感图像的图像质量,并以端到端的方式使用不同的检测器网络,其中检测器损失被探测器损失反应到Eesrgan中,以改善检测性能。我们提出了一个具有三个组件的体系结构:Esrgan,Edge Enhancement Network(EEN)和检测网络。我们为ESRGAN和EEN使用残留的残留密度块(RRDB),对于检测器网络,我们使用基于区域的卷积网络(FRCNN)(两阶段检测器)和单光箱多盒探测器(SSD)(一个阶段检测器)(一个阶段检测器)。与独立的最先进的对象探测器相比,在公共公共场所(带有上下文的汽车开销)和自组装(石油和天然气储罐)卫星数据集的实验表现出了出色的性能。
The detection performance of small objects in remote sensing images is not satisfactory compared to large objects, especially in low-resolution and noisy images. A generative adversarial network (GAN)-based model called enhanced super-resolution GAN (ESRGAN) shows remarkable image enhancement performance, but reconstructed images miss high-frequency edge information. Therefore, object detection performance degrades for small objects on recovered noisy and low-resolution remote sensing images. Inspired by the success of edge enhanced GAN (EEGAN) and ESRGAN, we apply a new edge-enhanced super-resolution GAN (EESRGAN) to improve the image quality of remote sensing images and use different detector networks in an end-to-end manner where detector loss is backpropagated into the EESRGAN to improve the detection performance. We propose an architecture with three components: ESRGAN, Edge Enhancement Network (EEN), and Detection network. We use residual-in-residual dense blocks (RRDB) for both the ESRGAN and EEN, and for the detector network, we use the faster region-based convolutional network (FRCNN) (two-stage detector) and single-shot multi-box detector (SSD) (one stage detector). Extensive experiments on a public (car overhead with context) and a self-assembled (oil and gas storage tank) satellite dataset show superior performance of our method compared to the standalone state-of-the-art object detectors.