论文标题
分散管理良好的托管非线性schrödinger方程
Well-posedness of dispersion managed nonlinear Schrödinger equations
论文作者
论文摘要
我们证明了Gabitov-turitsyn或分散管理的非线性schrödinger方程的本地和全球范围良好的结果,具有巨大的非线性和$ l^2(\ Mathbb {r})$和$ h^1(\ Mathbb {r})的$ L^2(\ Mathbb {r})上的任意平均分散。此外,当平均分散液为非负数时,我们表明基集态轨道稳定。这涵盖了非饱和和饱和的非线性极化和产量的情况,对于饱和的非线性,这是轨道稳定性的第一个证明。
We prove local and global well-posedness results for the Gabitov-Turitsyn or dispersion managed nonlinear Schrödinger equation with a large class of nonlinearities and arbitrary average dispersion on $L^2(\mathbb{R})$ and $H^1(\mathbb{R})$. Moreover, when the average dispersion is non-negative, we show that the set of ground states is orbitally stable. This covers the case of non-saturated and saturated nonlinear polarizations and yields, for saturated nonlinearities, the first proof of orbital stability.