论文标题

可预测性作为明显和潜在物理学的探针:多效SM掺杂Bifeo3中原子量表结构,化学和极化行为的情况

Predictability as a probe of manifest and latent physics: The case of atomic scale structural, chemical, and polarization behaviors in multiferroic Sm-doped BiFeO3

论文作者

Ziatdinov, Maxim, Creange, Nicole, Zhang, Xiaohang, Morozovska, Anna, Eliseev, Eugene, Vasudevan, Rama K., Takeuchi, Ichiro, Nelson, Chris, Kalinin, Sergei V.

论文摘要

一定效应或现象的可预测性通常等同于相关的物理定律的知识,通常被理解为系统和已知状态之间的功能或数值衍生的关系。相应地,与先验知识不一致的观察结果可用于得出有关系统性质的新知识,或表明存在但未知机制的存在。在这里,我们探讨了高斯流程(GP)的适用性,以从多模式观察中建立局部行为的可预测性和不确定性,从而提供了这种经典范式的替代方案。使用多用量SM掺杂的BifeO3的原子分辨率扫描透射电子显微镜(STEM)在广泛的组成范围内,我们直接可视化材料的原子结构以及结构,物理和化学阶参数参数场。 GP回归用于从不同的参数组中建立局部极化场的可预测性,包括相邻的极化值以及物理和化学描述符的几种组合,包括晶格参数,柱子强度等。我们观察到某些要素的微观结构要素,包括充电和未充电的域以及这些界限以及这些相关性的特定预测及其界面的界面以及界面的界面,并构成了这些界面的界面,并构成了界面的界面,并构成了界面的界面,并构成了界面的分配界面的组合,包括相关的群组的组合,包括相关性的组合,包括相关性的组合,这些元素兼容了组合的组合。整个组成系列一致。讨论了相关的生成物理机制。我们认为,观察数据中的可预测性和不确定性提供了一种新的途径,可以从多模式局部观测值中探测凝结物质系统的物理。

The predictability of a certain effect or phenomenon is often equated with the knowledge of relevant physical laws, typically understood as a functional or numerically derived relationship between the observations and known states of the system. Correspondingly, observations inconsistent with prior knowledge can be used to derive new knowledge on the nature of the system or indicate the presence of yet unknown mechanisms. Here we explore the applicability of Gaussian Processes (GP) to establish predictability and uncertainty of local behaviors from multimodal observations, providing an alternative to this classical paradigm. Using atomic-resolution Scanning Transmission Electron Microscopy (STEM) of multiferroic Sm-doped BiFeO3 across a broad composition range, we directly visualize the atomic structure and structural, physical, and chemical order parameter fields for the material. GP regression is used to establish the predictability of the local polarization field from different groups of parameters, including the adjacent polarization values and several combinations of physical and chemical descriptors, including lattice parameters, column intensities, etc. We observe that certain elements of microstructure including charged and uncharged domain walls and interfaces with the substrate are best predicted with specific combinations of descriptors, and this predictability and their associated uncertainties are consistent across the composition series. The associated generative physical mechanisms are discussed. We argue that predictability and uncertainty in observational data offers a new pathway to probe the physics of condensed matter systems from multimodal local observations.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源