论文标题

在自然图像中评估具有多层显着性的多个对象的显着对象检测

Evaluating Salient Object Detection in Natural Images with Multiple Objects having Multi-level Saliency

论文作者

Yildirim, Gökhan, Sen, Debashis, Kankanhalli, Mohan, Süsstrunk, Sabine

论文摘要

使用二进制地面真理评估显着对象检测,标签是显着的对象类和背景。在本文中,我们基于在一个新的图像数据集上的三个主观实验来证实,自然图像中的对象本质上被认为具有不同的重要性水平。我们的数据集,名为鲑鱼(多对象自然图像中的显着性),具有588个包含多个对象的图像。主观实验通过眼睛固定持续时间,点击和矩形图进行了创纪录的自发关注和感知。由于多对象图像中的对象显着性本质上是多级别的,因此我们建议必须评估显着对象检测,以便除了显着对象类检测能力以外的所有多级别显着对象。为此,我们使用主观实验的结果来生成多层地图作为地面真相,与所有数据集图像相对应,标签是多级别的显着对象和背景。然后,我们建议使用平均绝对误差,肯德尔的等级相关性和Precision-Recall曲线下的平均面积,以评估我们多层次的显着地面真相数据集上现有的显着对象检测方法。代表图像上显着检测的方法作为图形的局部 - 全球分层处理,在我们的数据集中表现良好。

Salient object detection is evaluated using binary ground truth with the labels being salient object class and background. In this paper, we corroborate based on three subjective experiments on a novel image dataset that objects in natural images are inherently perceived to have varying levels of importance. Our dataset, named SalMoN (saliency in multi-object natural images), has 588 images containing multiple objects. The subjective experiments performed record spontaneous attention and perception through eye fixation duration, point clicking and rectangle drawing. As object saliency in a multi-object image is inherently multi-level, we propose that salient object detection must be evaluated for the capability to detect all multi-level salient objects apart from the salient object class detection capability. For this purpose, we generate multi-level maps as ground truth corresponding to all the dataset images using the results of the subjective experiments, with the labels being multi-level salient objects and background. We then propose the use of mean absolute error, Kendall's rank correlation and average area under precision-recall curve to evaluate existing salient object detection methods on our multi-level saliency ground truth dataset. Approaches that represent saliency detection on images as local-global hierarchical processing of a graph perform well in our dataset.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源