论文标题
无序的Chern绝缘子的kibble-zurek行为
Kibble-Zurek behavior in disordered Chern insulators
论文作者
论文摘要
即使在兰道理论意义上没有局部顺序参数,对于Chern绝缘子中的拓扑量子相变存在,但高度非本地浆果曲率在量子关键点附近表现出关键行为。我们研究了其真实空间类似物的临界特性,当地的Chern标记在弱小的Chern绝缘子中。由于无序,不均匀性出现在局部Chern标记的空间分布中。它们的尺寸表现出与关键指数相匹配的关键指数缩放,该指数匹配了从干净系统的浆果曲率提取的。我们将系统缓慢地通过这样的量子相变。非平衡后状态中不均匀性的特征大小遵守kibble-zurek缩放。因此,在这种情况下,局部Chern标记确实以类似的方式表现出与对称打破二阶相变的局部顺序参数。 Kibble-Zurek缩放还适用于激发和轨道极化的空间分布中的不均匀性。
Even though no local order parameter in the sense of the Landau theory exists for topological quantum phase transitions in Chern insulators, the highly non-local Berry curvature exhibits critical behavior near a quantum critical point. We investigate the critical properties of its real space analog, the local Chern marker, in weakly disordered Chern insulators. Due to disorder, inhomogeneities appear in the spatial distribution of the local Chern marker. Their size exhibits power-law scaling with the critical exponent matching the one extracted from the Berry curvature of a clean system. We drive the system slowly through such a quantum phase transition. The characteristic size of inhomogeneities in the non-equilibrium post-quench state obeys the Kibble-Zurek scaling. In this setting, the local Chern marker thus does behave in a similar way as a local order parameter for a symmetry breaking second order phase transition. The Kibble-Zurek scaling also holds for the inhomogeneities in the spatial distribution of excitations and of the orbital polarization.