论文标题

线性系统的数据驱动攻击检测

Data-Driven Attack Detection for Linear Systems

论文作者

Krishnan, Vishaal, Pasqualetti, Fabio

论文摘要

本文研究了具有线性和时间不变动力学的确定性系统,研究了攻击检测问题。与利用系统动力学知识的现有研究不同,以推导安全界限和监视方案的方式有所不同,我们专注于系统动态以及攻击策略和攻击位置尚不清楚的情况。我们仅根据观察到的数据来得出基本的安全限制,而无需估计系统动力学(实际上,对系统的可识别性没有假设)。特别是,(i)我们得出检测限制,这是观察到的数据的信息和长度的函数,(ii)提供了数据驱动的不可检测攻击的表征,(iii)构建数据驱动的检测监视器。令人惊讶的是,根据有关数据驱动控制的最新研究,我们的结果表明,如果收集到的数据仍然足够丰富,则基于模型和数据驱动的安全技术具有相同的基本限制。

This paper studies the attack detection problem in a data-driven and model-free setting, for deterministic systems with linear and time-invariant dynamics. Differently from existing studies that leverage knowledge of the system dynamics to derive security bounds and monitoring schemes, we focus on the case where the system dynamics, as well as the attack strategy and attack location, are unknown. We derive fundamental security limitations as a function of only the observed data and without estimating the system dynamics (in fact, no assumption is made on the identifiability of the system). In particular, (i) we derive detection limitations as a function of the informativity and length of the observed data, (ii) provide a data-driven characterization of undetectable attacks, and (iii) construct a data-driven detection monitor. Surprisingly, and in accordance with recent studies on data-driven control, our results show that model-based and data-driven security techniques share the same fundamental limitations, provided that the collected data remains sufficiently informative.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源