论文标题
Trowai软件框架:用于将特洛伊木马嵌入深度学习模型的开发工具
The TrojAI Software Framework: An OpenSource tool for Embedding Trojans into Deep Learning Models
论文作者
论文摘要
在本文中,我们介绍了Trojai软件框架,这是一个开源的Python工具集,该工具能够生成触发的(中毒)数据集和相关的深度学习(DL)模型(DL)模型。我们利用开发的框架来生成大量的木马分类器,并展示了使用矢量观测值生成Trojan的加强学习模型的能力。 MNIST的结果表明,触发器的性质,训练批量的大小和数据集中毒百分比都会影响木马的成功嵌入。我们测试了针对Trojaned MNIST模型的神经清洁,并在训练有素的型号中成功检测到了大约$ 18 \%$的时间。我们的实验和工作流程表明,Trojai软件框架将使研究人员能够轻松了解数据集的各种配置和训练超参数对生成的Trojaned深度学习模型的影响,并可用于快速,全面地测试新Trojan检测方法。
In this paper, we introduce the TrojAI software framework, an open source set of Python tools capable of generating triggered (poisoned) datasets and associated deep learning (DL) models with trojans at scale. We utilize the developed framework to generate a large set of trojaned MNIST classifiers, as well as demonstrate the capability to produce a trojaned reinforcement-learning model using vector observations. Results on MNIST show that the nature of the trigger, training batch size, and dataset poisoning percentage all affect successful embedding of trojans. We test Neural Cleanse against the trojaned MNIST models and successfully detect anomalies in the trained models approximately $18\%$ of the time. Our experiments and workflow indicate that the TrojAI software framework will enable researchers to easily understand the effects of various configurations of the dataset and training hyperparameters on the generated trojaned deep learning model, and can be used to rapidly and comprehensively test new trojan detection methods.