论文标题

由分布对抗网络驱动的大规模多目标优化

Large Scale Many-Objective Optimization Driven by Distributional Adversarial Networks

论文作者

Liang, Zhenyu, Li, Yunfan, Wan, Zhongwei

论文摘要

估计分布算法(EDA)作为EAS之一是一个随机优化问题,该问题建立了一个概率模型来描述解决方案的分布,并随机对概率模型进行样本来创建后代并优化模型和人群。参考矢量引导的进化(RVEA)基于EDA框架,具有更好的绩效来解决MAOPS。此外,使用生成的对抗网络生成后代解决方案也是EAS中的最新思想,而不是交叉和突变。在本文中,我们将提出一种基于RVEA [1]框架的新算法,并使用分布对抗网络(DAN)[2]生成新的后代。 DAN使用新的分配框架来对神经网络进行对抗训练,并在真正的样本上进行操作,而不是单点,因为与单点样本方法相比,该框架还会导致更稳定的训练和非常更好的模式覆盖率。因此,DAN可以快速生成有关数据分布的高收敛性的后代。此外,我们还基于竞争性群体优化器(LMOCSO)[3]使用大规模的多目标优化,以采用新的两阶段策略来更新该职位,以显着提高搜索效率,以在巨大的决策空间中找到最佳解决方案。该建议的新算法将在大规模多目标问题(LSMOP)中对9个基准问题进行测试。为了衡量性能,我们将将我们的提案算法与一些最先进的EAS进行比较,例如RM-MEDA [4],MO-CMA [10]和NSGA-II。

Estimation of distribution algorithms (EDA) as one of the EAs is a stochastic optimization problem which establishes a probability model to describe the distribution of solutions and randomly samples the probability model to create offspring and optimize model and population. Reference Vector Guided Evolutionary (RVEA) based on the EDA framework, having a better performance to solve MaOPs. Besides, using the generative adversarial networks to generate offspring solutions is also a state-of-art thought in EAs instead of crossover and mutation. In this paper, we will propose a novel algorithm based on RVEA[1] framework and using Distributional Adversarial Networks (DAN) [2]to generate new offspring. DAN uses a new distributional framework for adversarial training of neural networks and operates on genuine samples rather than a single point because the framework also leads to more stable training and extraordinarily better mode coverage compared to single-point-sample methods. Thereby, DAN can quickly generate offspring with high convergence regarding the same distribution of data. In addition, we also use Large-Scale Multi-Objective Optimization Based on A Competitive Swarm Optimizer (LMOCSO)[3] to adopts a new two-stage strategy to update the position in order to significantly increase the search efficiency to find optimal solutions in huge decision space. The propose new algorithm will be tested on 9 benchmark problems in Large scale multi-objective problems (LSMOP). To measure the performance, we will compare our proposal algorithm with some state-of-art EAs e.g., RM-MEDA[4], MO-CMA[10] and NSGA-II.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源