论文标题

与平均时间对称性非线性光学动力学中的拓扑保护

Topological protection in nonlinear optical dynamics with parity-time symmetry

论文作者

Yu, Sunkyu, Piao, Xianji, Park, Namkyoo

论文摘要

拓扑阶段表现出具有连续变形的特性,如凝结物理和电磁波中的拓扑保护所示。尽管其无处不在的性质和最近对合成维度,非热汉密尔顿人和非线性动力学的扩展,但在空间晶格中通常描述了拓扑保护,其圆形晶格中的Chern数字在Brillouin区域,重点是实现反向散射波运输的实现。在这里,我们研究了平均时间对称非线性光学动力学中不同类别的拓扑保护,从而利用了光学状态轨迹的拓扑不变性。对于由增益和损失原子组成的耦合的非线性光子系统,我们将平衡的拓扑分别分类为不间断和损坏的平等时间对称性。利用拓扑阶段对时间扰动的免疫力,我们基于受奇异时间对称性保护的振动式淬灭机制,通过寄生非线性谐振器进行噪声免疫激光调节和整流。通过非线性动力学之间的拓扑光子学和平均时间对称性之间的连接为噪声免疫信号处理提供了强大的平台。

Topological phases exhibit properties that are conserved for continuous deformations, as demonstrated in topological protections in condensed-matter physics and electromagnetic waves. Despite its ubiquitous nature and recent extensions to synthetic dimensions, non-Hermitian Hamiltonians, and nonlinear dynamics, topological protection has generally been described in spatial lattices with the Chern number in the Brillouin zone, focusing on the realization of backscattering-free wave transport. Here, we investigate a different class of topological protection in parity-time-symmetric nonlinear optical dynamics, exploiting the topological invariance of optical state trajectories. For coupled nonlinear photonic systems composed of gain and loss atoms, we classify the topology of equilibria separately for unbroken and broken parity-time symmetry. Utilizing the immunity of topological phases against temporal perturbations, we develop noise-immune laser modulation and rectification with a parasitic nonlinear resonator based on oscillation quenching mechanisms that are protected by parity-time symmetry. The connection between topological photonics and parity-time symmetry through nonlinear dynamics provides a powerful platform for noise-immune signal processing.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源