论文标题
拓扑双曲线晶格
Topological hyperbolic lattices
论文作者
论文摘要
通过否定欧几里得的平行假设发现的非欧几里得几何形状在数学和相关领域中具有相当大的兴趣,用于描述地理坐标,互联网基础设施和相对论的一般理论。值得注意的是,双曲线几何晶格晶格中的无限数量的常规细胞将欧几里得布拉维斯晶格和随之而来的带理论扩展到非欧盟的几何形状。在这里,我们证明了双曲线几何形状中的拓扑现象,探讨了几何形状的量化曲率和边缘优势如何影响拓扑阶段。我们报告了构造欧几里得光子平台的配方,该配方将双曲线晶格的拓扑带性质在统一的伪依赖性磁场下固定,实现了量子旋转厅效应的非欧亚人类似物。对于具有不同量化曲率的双曲线晶格,我们检查了螺旋边缘状态的拓扑保护并概括了Hofstadter的蝴蝶,显示了高度弯曲的双曲机平面中拓扑免疫的独特光谱灵敏度。我们的方法适用于一般的非欧几里得几何形状,并可以利用频段理论的无限晶格自由度。
Non-Euclidean geometry, discovered by negating Euclid's parallel postulate, has been of considerable interest in mathematics and related fields for the description of geographical coordinates, Internet infrastructures, and the general theory of relativity. Notably, an infinite number of regular tessellations in hyperbolic geometry-hyperbolic lattices-can extend Euclidean Bravais lattices and the consequent band theory to non-Euclidean geometry. Here we demonstrate topological phenomena in hyperbolic geometry, exploring how the quantized curvature and edge dominance of the geometry affect topological phases. We report a recipe for the construction of a Euclidean photonic platform that inherits the topological band properties of a hyperbolic lattice under a uniform, pseudospin-dependent magnetic field, realizing a non-Euclidean analogue of the quantum spin Hall effect. For hyperbolic lattices with different quantized curvatures, we examine the topological protection of helical edge states and generalize Hofstadter's butterfly, showing the unique spectral sensitivity of topological immunity in highly curved hyperbolic planes. Our approach is applicable to general non-Euclidean geometry and enables the exploitation of infinite lattice degrees of freedom for band theory.