论文标题
数据驱动的歧义性歧义集的动力学集合的双曲线保护定律不确定输入
Dynamics of Data-driven Ambiguity Sets for Hyperbolic Conservation Laws with Uncertain Inputs
论文作者
论文摘要
概率分布的模棱两可集用于对冲有关随机数量的真实概率(QOIS)的不确定性。如果有的话,这些歧义集是从两个数据(在初始时间和沿物理域的边界收集的)和Wasserstein Metric的量度浓度结果构建的。为了传播到未来的歧义性,我们使用了一个依赖物理方程,该方程是管理通过分布方法获得的累积分布函数(CDF)演变的。这项研究的重点是通过调查数据驱动的歧义集的时空演化及其相关的保证,当他们描述使用随机输入的随机QOI时,它们的随机QOIS描述了遵守双曲线偏差方程时。对于具有平滑溶液的一般非线性双曲线方程,CDF方程用于传播偏置歧义带的上和下部信封。对于线性动力学,CDF方程使我们能够为更紧密的歧义球构建一个演变方程。我们证明,在这两种情况下,歧义集都可以保证在规定的信心内包含真实的(未知)分布。
Ambiguity sets of probability distributions are used to hedge against uncertainty about the true probabilities of random quantities of interest (QoIs). When available, these ambiguity sets are constructed from both data (collected at the initial time and along the boundaries of the physical domain) and concentration-of-measure results on the Wasserstein metric. To propagate the ambiguity sets into the future, we use a physics-dependent equation governing the evolution of cumulative distribution functions (CDF) obtained through the method of distributions. This study focuses on the latter step by investigating the spatio-temporal evolution of data-driven ambiguity sets and their associated guarantees when the random QoIs they describe obey hyperbolic partial-differential equations with random inputs. For general nonlinear hyperbolic equations with smooth solutions, the CDF equation is used to propagate the upper and lower envelopes of pointwise ambiguity bands. For linear dynamics, the CDF equation allows us to construct an evolution equation for tighter ambiguity balls. We demonstrate that, in both cases, the ambiguity sets are guaranteed to contain the true (unknown) distributions within a prescribed confidence.