论文标题
相对论量子力学中的位置和旋转
Position and spin in relativistic quantum mechanics
论文作者
论文摘要
详细分析了相对论量子力学中的位置和自旋问题。明确地表明,折叠式 - 杜斯(Foldy-Wouthuysen)表示中的位置和旋转算子(但在狄拉克(Dirac One)中)是经典位置和自旋变量的量子机械对应物。概率解释仅适用于折叠式波浪函数。讨论了相对论旋转操作员。如果使用轨道角动量的常规算子和剩余的框架自旋,则不存在自旋轨道相互作用。轨道角动量和自旋的替代定义基于非交通性几何形状,不满足标准的换向关系,并且可以允许自旋轨道相互作用。
The problem of the position and spin in relativistic quantum mechanics is analyzed in detail. It is definitively shown that the position and spin operators in the Foldy-Wouthuysen representation (but not in the Dirac one) are quantum-mechanical counterparts of the classical position and spin variables. The probabilistic interpretation is valid only for Foldy-Wouthuysen wave functions. The relativistic spin operators are discussed. The spin-orbit interaction does not exist for a free particle if the conventional operators of the orbital angular momentum and the rest-frame spin are used. Alternative definitions of the orbital angular momentum and the spin are based on noncommutative geometry, do not satisfy standard commutation relations, and can allow the spin-orbit interaction.