论文标题

通过潜在空间连接从频谱中立即恢复形状

Instant recovery of shape from spectrum via latent space connections

论文作者

Marin, Riccardo, Rampini, Arianna, Castellani, Umberto, Rodolà, Emanuele, Ovsjanikov, Maks, Melzi, Simone

论文摘要

我们介绍了第一种基于学习的方法,用于从拉普拉斯光谱中恢复形状。给定一个自动编码器,我们的模型采用循环一致模块的形式将潜在向量映射到特征值的序列。该模块在给定形状的频谱和几何形状之间提供了有效的链接。我们的数据驱动方法取代了先前方法所需的临时正规化器的需求,同时以计算成本的一小部分提供了更准确的结果。我们的学习模型在不同的维度(2D和3D形状),表示(网格,轮廓和点云)以及不同形状类别的情况下应用不进行修改,并承认输入频谱的任意分辨率不影响复杂性。提高的灵活性使我们能够为统一框架内的3D视觉和几何处理中的臭名昭著的任务提供代理,并解决臭名昭著的艰巨任务,包括从光谱,网格超级分辨率,形状探索,样式转移,频谱转移,点云,分段转移和点及点匹配的频谱估算。

We introduce the first learning-based method for recovering shapes from Laplacian spectra. Given an auto-encoder, our model takes the form of a cycle-consistent module to map latent vectors to sequences of eigenvalues. This module provides an efficient and effective linkage between spectrum and geometry of a given shape. Our data-driven approach replaces the need for ad-hoc regularizers required by prior methods, while providing more accurate results at a fraction of the computational cost. Our learning model applies without modifications across different dimensions (2D and 3D shapes alike), representations (meshes, contours and point clouds), as well as across different shape classes, and admits arbitrary resolution of the input spectrum without affecting complexity. The increased flexibility allows us to provide a proxy to differentiable eigendecomposition and to address notoriously difficult tasks in 3D vision and geometry processing within a unified framework, including shape generation from spectrum, mesh super-resolution, shape exploration, style transfer, spectrum estimation from point clouds, segmentation transfer and point-to-point matching.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源